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Global surface warming (global warming hereafter) since 
the beginning of the twentieth century is unequivocal, and 
humans are the main cause through the emission of vast 

amounts of greenhouse gases (GHGs), especially carbon dioxide 
(CO2)1–3. The oceans have stored more than 90% of the heat trapped 
in the climate system caused by the accumulation of GHGs in the 
atmosphere, thereby contributing to sea-level rise and leading to 
more frequent and longer lasting marine heat waves4. Moreover, the 
oceans have taken up about one third of the total anthropogenic 
CO2 emissions since the start of industrialization, causing ocean 
acidification5. Both ocean warming and acidification already have 
adverse consequences for marine ecosystems6. Some of the global 
warming impacts, however, unfold slowly in the ocean due to its 
large thermal and dynamical inertia. Examples are sea-level rise and 
the response of the Atlantic Meridional Overturning Circulation 
(AMOC), a three-dimensional system of currents in the Atlantic 
Ocean with global climatic relevance7–10.

Climate models predict substantial AMOC slowing if atmo-
spheric GHG concentrations continue to rise unabatedly1,11–14. 
Substantial AMOC slowing would drive major climatic impacts 
such as shifting rainfall patterns on land15, accelerating regional 
sea-level rise16,17 and reducing oceanic CO2 uptake. However, it 
is still unclear as to whether sustained AMOC slowing is under-
way18–22. Direct ocean-circulation observation in the North Atlantic 
(NA) is limited9,23–27. Inferences drawn about the AMOC’s history 
from proxy data28 or indices derived from other variables, which 
may provide information about the circulation’s variability (for 
example, sea surface temperature (SST)21,29,30, salinity31 or Labrador 
Sea convection32), are subject to large uncertainties.

Atlantic SST
Pronounced decadal and longer timescale (hereafter, long-term) 
natural variability32 complicates the detection of anthropogenic sig-
nals over the NA sector. Further, the drivers of long-term climate 
variability are not well understood (for example, the causes of the 
Atlantic Multidecadal Oscillation/Variability (AMO/V), the lead-
ing mode of long-term NA-SST variability33–35). Internal36,37 as well 

as external38–40 mechanisms have been proposed to contribute to 
the AMO/V, and the mechanisms also differ greatly among climate 
models39,41–44. Observations suggest that the SST contrast between 
the NA and South Atlantic, termed interhemispheric dipole45, could 
be linked to the AMOC, which in turn is forced by the low-frequency 
portion of the North Atlantic Oscillation (NAO; Fig. 1d; Latif 
et al.19), the leading mode of the Northern Hemisphere’s atmo-
spheric winter-circulation variability46. This link is supported by a 
number of climate models (for example, Delworth et al.47). However, 
the relationships between AMO/V, AMOC and NAO are obscured 
by variable external forcing48–50. Remote forcing, for example, from 
the Southern Ocean (Martin et al.51), may also impact the AMOC.

Ocean-circulation changes most prominently influence the SST 
on a sub-basin scale. The SST cooling in parts of the subpolar NA, 
which is referred to as the North Atlantic warming hole (NAWH; 
Extended Data Fig. 1a), may be an example and the consequence of 
GHG-induced AMOC slowing and diminishing related northward 
ocean heat transport52–54. Other causes of the NAWH have been dis-
cussed too, for example, increased ocean heat transport out of the 
subpolar NA into higher latitudes55. Moreover, the deep mixed lay-
ers in the NAWH (Extended Data Fig. 1b), indicating strong verti-
cal heat exchange, would delay externally forced surface warming. 
Anthropogenic aerosols reducing net surface solar radiation could 
also counteract the surface warming in the extratropical NA39.

The 1900–2019 SST averaged over the NAWH (small boxes 
in Figs. 2b and 3b) and obtained from two observational datasets 
(Methods) exhibits strong long-term variability (Fig. 1a). Two other 
indices (Fig. 1b,c), averaging the SST over larger areas of the NA 
(Methods), exhibit similar long-term variability. All three indices 
indicate a major multidecadal cooling trend during 1930–1970. The 
later part of the cooling trend has been discussed in Hodson et al.56. 
They conclude that internal as well as external factors could have 
contributed to the cooling in the 1960s and early 1970s.

The SST in the NAWH (Fig. 1a) underwent a fast and strong warm-
ing in the 1990s and featured pronounced multiannual-to-decadal 
variability after 2000 without any obvious trend. The atmospheric 
CO2 forcing (Fig. 1d) and net top-of-the-atmosphere effective 
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radiative forcing (ERF; Methods and Figs. 2a and 3a), however, 
strongly increased from the 1970s onward. We note that the strong 
year-to-year variability in the SST of the NAWH is mostly due to 
atmospheric heat-flux forcing linked to the winter NAO57. This 
short-term variability is not addressed here, as the focus of this 
study is on the long-term variability.

Spatial structure of long-term SST change
Empirical orthogonal function (EOF) analysis is applied to the 
observed annual SST anomalies (blue boxes in Figs. 2b and 3b; 
Methods), which is a variance-maximizing multivariate statisti-
cal technique58. The two leading modes, EOF1 and EOF2, are 
dominated by long-term variability and are of interest here. EOF1 
accounts for 52.2% of the total Atlantic SST variability. The time 
evolution (principal component) of EOF1, PC1 (Fig. 2a), is gov-
erned by an accelerating upward trend with substantial superim-
posed less-energetic interannual-to-multidecadal variability. PC1 
follows the long-term evolution of the ERF well, with a correlation 
coefficient of 0.83 when the Shared Socioeconomic Pathway 5-8.5 
(SSP5-8.5; Methods) scenario is considered during 2015–2019. We 
suggest that EOF1 describes the externally forced Atlantic SST vari-
ability, in particular the effects of global warming. The prominent, 
short-lived, downward spikes in the ERF during the second half of 
the twentieth century, however, are not well captured by PC1 and 
have been attributed to explosive volcanic eruptions59.

The pattern of EOF1, shown as the local regression coefficients 
upon PC1 (Fig. 2b), exhibits positive anomalies over the Atlantic 
basin, with the exception of the NAWH. PC1 accounts for up to 

80% of the SST variability in the tropical Atlantic but hardly any 
in the NAWH. In most other regions of the Atlantic, the explained 
variances amount to at least 50%. EOF1 explains a relatively large 
fraction of the SST variability over most of the global ocean. We 
note the warming hole in the subpolar Southern Ocean (Fig. 2b 
and Extended Data Fig. 1a); there, stronger westerly surface winds 
(associated with stratospheric ozone loss60,61) or Antarctic meltwa-
ter62 may have offset GHG-forced warming. Moreover, in climate 
models, the internal long-term variability is particularly strong in 
both the Southern Ocean and NA63–67, hindering detection of exter-
nally forced signals.

The second most energetic mode (EOF2; Fig. 3) accounts for 
12.1% of the total Atlantic SST variability. The corresponding time 
series, PC2 (Fig. 3a), has no obvious relationship with the ERF 
and exhibits pronounced decadal-to-multidecadal variability but 
no trend. EOF2 is picking up the signal of the Atlantic interhemi-
spheric dipole, which has been linked to long-term AMOC vari-
ability in climate models29,30,44,68–70. Centres with opposite sign are 
observed in the subpolar NA and in the South Atlantic (Fig. 3b), 
where EOF2 typically accounts for up to 60% and 20% of the local 
SST variability, respectively. There is a highly significant correlation 
amounting to 0.7 between PC2 and an Atlantic interhemispheric 
dipole index as defined by Latif et al.19. EOF2 explains consider-
ably less variance in the tropical Atlantic where EOF1 explains the 
most. The salient feature of PC2 (Fig. 3a) is the marked decline 
during 1930–1970. We note that the multidecadal decline in PC2 
was preceded by a multidecadal decline in the winter NAO index 
(Extended Data Fig. 2). However, the largest significant correlation, 
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Fig. 1 | Time series of different SST indices. a, The NAWH SST index (°C), defined as the annual SST anomalies averaged over the region 46° N–62° N 
and 46° W–20° W. Observations for 1900–2019 from ERSSTv.5 (orange) and Kaplan SST v.2 (yellow), and ensemble-mean SST for 1900–2014 (dark blue 
line) from the historical simulations with the CMIP6 models and the individual historical simulations (thin grey lines) are shown. b, Same as a but for the 
NA-SST index (°C), defined as the annual SST anomalies averaged over the region 40° N–60° N and 80° W–0° E. c, Same as a but for the AMO/V (°C) 
index, defined as the 11-year running mean of the annual SST anomalies averaged over the region 0° N–65° N and 80° W–0° E. The SST indices in a–c are 
calculated as area-weighted means. d, NAO index (dimensionless) for 1900–2019 (red), defined as the difference in the normalized winter (December–
March) sea-level pressure between Lisbon (Portugal) and Stykkisholmur/Reykjavik (Iceland). The blue curve indicates the equivalent CO2 radiative forcing 
(W m−2) for 1900–2019, which is taken from the Representative Concentration Pathway (RCP) SSP5-8.5 after 2014.
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which is negative, is observed with no lag (Extended Data Fig. 3). 
We hypothesize that EOF2 describes the internal, AMOC-related, 
SST variability in the Atlantic.

Historical climate model simulations
The observed NA-SST variability is within the range of the his-
torical simulations with state-of-the-art climate models from the 
Coupled Model Intercomparison Project phase 6 (CMIP6; Methods 
and Fig. 1a–c), employing estimates of external forcing from 1900 
to 2014 (ref. 71). A measure of the externally forced variability is 
given by the ensemble mean, that is, by averaging over all simula-
tions. The ensemble-mean SST variability is much weaker than the 
observed variability in the NAWH (Fig. 1a) and subpolar NA (Fig. 
1b), suggesting the prevalence of internal SST variability in these 
two regions. The observed SST variability is also underestimated by 
the ensemble mean (but to a lesser extent) when averaging over the 
whole NA (Fig. 1c), supporting a major role of external forcing in 
driving tropical and subtropical Atlantic SST. This is consistent with 
EOF1, which is closely linked to the ERF (Fig. 2a), explaining the 
most variance in the tropics and subtropics. The ensemble-mean 
NA SSTs lead the observed SSTs by about a decade in all three index 
regions (Fig. 1a–c). We note that historical external forcing is sub-
ject to considerable uncertainties. Aerosol–cloud interaction is the 
largest source of uncertainty in estimating historical anthropogenic 
radiative forcing, and representing this interaction in climate mod-
els poses a major challenge72,73. Finally, in the regions of the three 
SST indices, the 40-year linear SST trend during 1975–2014 lies 

within the trend distribution derived from the preindustrial control 
integrations of the models (Extended Data Fig. 4).

An EOF analysis is applied jointly to the ensemble-mean Atlantic 
SST and Atlantic meridional overturning streamfunction (MOC). 
The SST pattern (Fig. 4a) of the leading mode, EOF1mod, accounting 
for 53.6% of the joint variance is similar to that of EOF1 (Fig. 2b), 
with major warming over most of the Atlantic and a warming hole 
in the subpolar NA south of Greenland. Variances in SST explained 
by EOF1mod are generally large, exhibiting a maximum in the sub-
tropical NA with values in localized regions exceeding 90%, and a 
minimum south of Greenland with values of less than 10% (Fig. 4a). 
The MOC pattern of EOF1mod exhibits negative loadings north of 
the Equator, indicating weaker overturning, that are centred near 
40° N in the depth range of 1,000–2,000 m (Fig. 4b). Positive load-
ings are observed south of the Equator. With regard to MOC, the 
explained variances are largest in the centre of the negative load-
ings, where they amount to about 80% (Fig. 4b). Regions of large 
explained variances indicate a high model consistency.

In climate models, MOC anomalies linked to changes in North 
Atlantic Deep Water formation first appear in the subpolar NA 
and then propagate southward74. Fully developed AMOC slowing 
is characterized by basin-wide negative streamfunction anomalies 
in the models13. EOF1mod is thus consistent with the initial stage of 
AMOC slowing. Because EOF1mod is the leading mode of the exter-
nally forced variability in SST and MOC in the models, PC1mod (Fig. 
4c) is expected to be significantly correlated with the ERF. The cor-
relation coefficient between the two time series amounts to 0.79. 
PC1mod is governed by multidecadal variability until about 1980, and 
it exhibits a sustained upward trend thereafter. Since 1980, there is 
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Fig. 2 | eOF1 time series and regression map. Leading EOF (EOF1) of 
Atlantic SST calculated from ERSSTv.5 over the period 1900–2019. a, The 
blue curve indicates the principal component time series (PC1) of EOF1. 
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SSTs upon PC1. Colour shading shows the coefficient of the regression. 
The contours denote the explained variance; the contour interval is 0.2. 
The dots indicate significance at the 95% level. The blue box indicates 
the region over which the EOF analysis was performed, and the black box 
marks the region over which the NAWH index (Fig. 1a) is defined.
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a reduction in the AMOC transport at 30° N that amounts to about 
1 Sv (106 m3 s−1), which is assumed to be within the range of natural 
variability. This is supported by the distribution of non-overlapping 
40-year MOC trends calculated from the preindustrial control inte-
grations of the CMIP6 models (Fig. 4d), providing estimates of the 
internal MOC variability. The ensemble-mean reduction in ocean 
heat transport at 50° N is about 0.03 PW. We compare the AMOC 
index at 26.5° N reconstructed from EOF1mod with the RAPID 
data75 (Extended Data Fig. 1f). The 2004–2014 trend from RAPID 
amounts to −4.1 Sv and that from the reconstruction to −0.5 Sv. 
When assuming that the CMIP6-ensemble mean realistically repre-
sents the externally forced MOC variability, the trend from RAPID 
must contain a strong contribution from long-term internal vari-
ability. This is consistent with Weijer et al.11, who analysed another 
subset of the CMIP6 models, reporting that linear trends over the 
entire 1850–2014 historical period are generally neutral.

Discussion
Observed SSTs and a large ensemble of historical simulations with 
state-of-the-art climate models suggest the prevalence of internal 
AMOC variability since the beginning of the twentieth century. 
Observations and individual model runs show comparable SST vari-
ability in the NAWH region. However, the models’ ensemble-mean 
signal is much smaller, indicative of the prevalence of internal vari-
ability. Further, most of the SST cooling in the subpolar NA, which 
has been attributed to anthropogenic AMOC slowing21, occurred 

during 1930–1970, when the radiative forcing did not exhibit a 
major upward trend. We conclude that the anthropogenic signal in 
the AMOC cannot be reliably estimated from observed SST. A lin-
ear and direct relationship between radiative forcing and AMOC 
may not exist. Further, the relevant physical processes could be 
shared across EOF modes, or a mode could represent more than 
one process.

A relatively stable AMOC and associated northward heat trans-
port during the past decades is also supported by ocean syntheses 
combining ocean general circulation models and data76,77, hindcasts 
with ocean general circulation models forced by observed atmo-
spheric boundary conditions78 and instrumental measurements of 
key AMOC components9,22,79–81. Neither of these datasets suggest 
major AMOC slowing since 1980, and neither of the AMOC indi-
ces from Rahmstorf et al.20 or Caesar et al.21 show an overall AMOC 
decline since 1980.

An important remaining issue is the question of how well the 
externally forced part of the Atlantic SSTs can be determined. 
Standard EOF analysis has been used above to identify the forced 
component. We additionally used two other methods. First, we 
applied principal oscillation pattern (POP) analysis (Methods) to 
the observed SSTs, again only over the Atlantic Ocean. The results 
of the POP analysis (Extended Data Fig. 5) are similar to those of 
the EOF analysis (Fig. 2), in that the time series of the leading POP 
mode (POP1) is highly correlated with the ERF (r = 0.85; Extended 
Data Fig. 5a) and POP1 (Extended Data Fig. 5b) is similar to EOF1 
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(Fig. 2b). Second, we derived the externally forced component from 
the historical simulations with the CMIP6 models by applying 
signal-to-noise ratio (S/N) maximizing EOF analysis (Methods) to 
the modelled SSTs over the global ocean (Extended Data Fig. 6). As 
expected, the time series of the leading mode (S/N EOF1) is highly 
correlated with the ERF (r = 0.9, Extended Data Fig. 6a). The asso-
ciated regression pattern (Extended Data Fig. 6b) is similar to that 
linked to both EOF1 (Fig. 2b) and POP1 (Extended Data Fig. 5b), 
indicating little sensitivity to the choice of the statistical method in 
determining the externally forced SST variability.

We subtracted the variability associated with S/N-EOF1 from 
the observed SSTs to estimate the internal SST variability, and stan-
dard EOF analysis was applied to the residuals over the Atlantic. 
The second most energetic EOF mode (EOF2res; Extended Data Fig. 
7), accounting for 19.2% of the variability in the residuals, is mul-
tidecadal (Extended Data Fig. 7a). EOF2res is the interhemispheric 
dipole, with explained variances up to 40% in the NAWH and in the 
centre of the southern pole (Extended Data Fig. 7b). EOF2res is simi-
lar to EOF2 (Fig. 3), which is reassuring and supports the notion 
that EOF2 actually reflects internal SST variability.

The leading EOF of the residuals over the Atlantic (EOF1res; 
Extended Data Fig. 8) accounts for 27.1% of the variance. Its time 
series (PC1res) is characterized by a marked centennial change with a 
minimum in the 1940s (Extended Data Fig. 8a). Over the Atlantic, the 
regression coefficients upon PC1res are largest north of the Equator 
(Extended Data Fig. 8b) and reminiscent of the “horseshoe” pattern 
linked to the positive phase of the NAO. PC1res and the annual-mean 
NAO index exhibit a statistically significant correlation of 0.4.

A number of factors, internal and external, can influence the 
AMOC. Menary et al.38 report that the multi-model mean AMOC 
strengthened by approximately 10% from 1850 to 1985 in histori-
cal simulations with CMIP5 and CMIP6 models, which has been 
attributed to aerosol forcing. This is consistent with our study in 
that the AMOC slowing largely takes place after 1980. Analysis of 
single-forcing experiments by Menary et al.38 reveal that the forced 
response of the AMOC is a balance of opposing contributions from 
aerosols, increasing AMOC, and GHGs, decreasing AMOC. Besides 
surface heat flux, surface freshwater input from Greenland ice melt 
is thought to be an important factor causing anthropogenic AMOC 
slowing. Meltwater forcing is not considered in the historical simu-
lations with the CMIP6 models, which may cause underestimation 
of AMOC slowing. A high-resolution ocean general circulation 
model study finds that the present meltwater forcing from the west 
Greenland Ice Sheet is not sufficiently large to drive significant 
reductions in North Atlantic Deep Water formation and thus AMOC 
strength82. Climate model sensitivity to external forcing, however, is 
a long-standing issue, also with regard to the AMOC’s sensitivity 
to freshwater forcing83. In summary, our results reinforce the need 
for systematic and sustained in-situ AMOC observation systems to 
detect with high confidence externally forced AMOC slowing9,84,75.
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Methods
Observations. Observed SST during 1900–2019 with 2° × 2° resolution is  
used here and obtained from Extended Reconstructed Sea Surface Temperature 
Version 5 (ERSSTv.5; ref. 85). SSTs from Kaplan Extended SST v.2 during  
1900–2019 with 5° × 5° resolution are also analysed86. We use the station- 
based NAO index from 1900 to 2019 retrieved from https://climatedataguide. 
ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station- 
based. This NAO index is based on the difference in normalized Northern 
Hemisphere winter (December–March) sea-level pressure between Lisbon, 
Portugal and Stykkisholmur/Reykjavik, Iceland. The annual-mean NAO index  
is also used.

Mixed-layer depth climatology with 2° × 2° resolution is from de Boyer 
Montégut et al.87 and based on a density threshold of 0.03 kg m−3.

Annual satellite sea-level data for 1993–2019 are from Copernicus (https://cds.
climate.copernicus.eu). In the EOF analysis, the Sea Level Anomaly product was 
used, which is defined relative to the mean of 1993–2012 (ref. 88).

Net ERF. Net ERF (expressed in W m−2) is the globally averaged net downward 
radiative flux at the top of the atmosphere after allowing for atmospheric 
temperature, water vapour and clouds to adjust but with surface temperature  
or a portion of surface conditions unchanged1. The ERF data are from  
Smith et al.89, where they include 14 components: CO2, CH4, N2O, other  
well-mixed GHGs (halogenated compounds), tropospheric O3, stratospheric 
O3, stratospheric H2O, aviation contrails and contrail cirrus, aerosol–radiation 
interactions, aerosol–cloud interactions, black carbon on snow, land-use change, 
volcanoes and solar.

In this study, four combinations of the SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0 and 
SSP5-8.5)90 are used. In Fig. 1d, the combination of the historical ERF due to the 
CO2 concentration (1900–2014) and SSP5-8.5 (2015–2019) is shown. The other 
SSPs are shown in Fig. 2a.

Climate models. An ensemble of 35 historical simulations for 1900–2014 from 
CMIP6 is used in the calculation of SST indices and S/N-maximizing EOF. 
The models are: ACCESS-CM2, ACCESS-Earth System Model (ESM) v.1.5, 
Canadian ESM v.5, CESM2, CESM2-WACCM, CESM2-WACCM-FV2, CIESM, 
CMCC-CM2-HR4, E3SM-1-0, E3SM-1-1, E3SM-1-1-ECA, FGOALS-f3-L, 
FGOALS-g3, INM-CM4-8, INM-CM5-0, MIROC6, MPI-ESM-1-2-HAM, 
MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorCPM1, NorESM2-LM, 
NorESM2-MM, SAM0-UNICON, BCC-CSM2-MR, BCC-ESM1, CAMS-CSM1-0, 
CAS-ESM2-0, CMCC-CM2-SR5, FIO-ESM2-0, GISS-E2-1G, GISS-E2-1H, 
IPSL-CM6A-LR and MCM-UA-1-0. Only one ensemble member from each  
model is used. SST and MOC fields from the first 24 models are used to calculate 
the combined EOF in Fig. 4. SST and MOC fields are linearly interpolated to  
1° × 1° resolution.

EOF analysis. EOF analysis58 is a multivariate statistical method. The EOFs  
are the eigenvectors of the covariance matrix, and they are sorted in descending 
order by the explained variance. Time series, termed principal components 
(PCs), are obtained by projecting the original data onto the EOFs. In the joint 
EOF analysis of the ensemble-mean Atlantic SST and MOC, each variable was 
normalized by its own field sum of standard deviations, making each field have 
identical total variance.

POP analysis. POP analysis is a multivariate statistical method and is defined  
as the normal modes of a linear dynamical representation of the data in terms  
of a first‐order autoregressive-vector process with residual noise forcing91–93.  
For practical purposes, the original process is usually reduced into the subspace  
of leading EOFs. Here we use the first 10 EOFs accounting for 90.8% of the  
total variance.

SST-regression maps. We show global maps of local linear regression coefficients 
of SST upon the principal components (PCs) that have been normalized by their 
respective standard deviation. An F test is used to assess the significance of the 
regression coefficients.

S/N-maximizing EOFs. S/N-maximizing EOF analysis refers to a method  
of identifying the fingerprints of external forcing in an ensemble of forced  
climate model experiments. The method allows us to distinguish between the 
response to prescribed external forcing common to all ensemble members and 
internal variability, which is temporally uncorrelated between ensemble members. 
We follow the formulation of Venzke et al.94. The leading EOF has the largest S/N, 
and the corresponding PC represents the time evolution of the most dominant 
forced response.

Significance of correlations. The Student’s t-test and Monte Carlo  
simulation based on nonparametric random phase are applied to assess  
the statistical significance of the correlation coefficients95. All correlation 
coefficients mentioned in the main text are statistically significant at the  
95% confidence level.

Data availability
All the datasets used in this study are publicly available: ERSSTv.5 data at  
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html; Kaplan Extended 
SST v.2 data at https://www.psl.noaa.gov/data/gridded/data.kaplan_sst.html; 
the station-based NAO index at https://climatedataguide.ucar.edu/climate-data/
hurrell-north-atlantic-oscillation-nao-index-station-based; mixed-layer depth 
climatology data at http://www.ifremer.fr/cerweb/deboyer/mld/home.php; 
satellite sea-level data at https://cds.climate.copernicus.eu; ERF data at https://doi.
org/10.5281/zenodo.4624765; and all the CMIP6 model data at https://esgf-node.
llnl.gov/projects/cmip6/.

Code availability
The figures were generated using MATLAB and m_map (https://www.eoas.ubc.
ca/~rich/map.html), where the basemap data (GSHHG, https://www.ngdc.noaa.
gov/mgg/shorelines/gshhs.html) are used under the GNU Lesser General Public 
license. All the codes used in the data processing and visualization are available via 
Figshare at https://doi.org/10.6084/m9.figshare.19318004. Other code is available 
upon request to the corresponding author J.S.
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Extended Data Fig. 1 | Climatology and SL eOF. Extended Data Fig. 1 a) Map of the linear trends 1900–2019 of observed sea surface temperature (SST, 
°C/120 years). b) Mean mixed layer depth (MLD, m) from observations and averaged over 1961–2008. The criterion for defining MLD is based on a 
fixed threshold of 0.03 kg/m3. c) Leading EOF mode of sea-level variability (EOF1SL, m), calculated over the period 1993–2019. EOF1SL accounts for 36.3% 
of the total sea-level variance. d) The corresponding principal component time series (PC1SL) of EOF1. e) As c), but with the global average removed 
(dynamic sea level linked to EOF1SL). The globally averaged trend in annual-mean sea level during 1993–2019 amounts to 2.86 mm/year. f) Time series 
of EOF1SL-related dynamic sea level (m, blue curve) averaged over the box southeast of Greenland (40°W-17°W, 53°N-61°N), which is shown in e). 
Superimposed are the overturning (Sv) data 2004-2018 from the RAPID array at 26.5°N (orange curve) and the AMOC index 1993-2014 at 26.5 °N 
(green curve) that has been reconstructed from the joint (SST, MOC) EOF1mod calculated from the historical simulations with the CMIP6 models (Fig. 4).
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Extended Data Fig. 2 | PC2 and NAO index. Extended Data Fig. 2 PC2 (thin blue curve) of EOF2 and the winter-NAO index (December to February, 
station-based, thin orange curve). Dashed thick curves indicate the low-pass (LW) filtered indices, PC2 (blue lines), winter-NAO index (orange lines).
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Extended Data Fig. 3 | Cross correlation between PC2 and NAO index. Extended Data Fig. 3 Cross-correlation function as a function of the time lag 
coefficient between PC2 and winter-NAO index. Filled dots indicate significance at the 95% confidence level.
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Extended Data Fig. 4 | Distribution of 40-year SST trend. Extended Data Fig. 4 Probability distribution of non-overlapping 40-year SST trends in the 
regions of the three SST indices (with an interval of 0.5 °C/40 years), derived from the control integrations of the CMIP6 models. Vertical black solid 
line indicates the 40-year trend from ERSST (1975–2014), vertical black dashed line indicates Kaplan SST (1975–2014), vertical black dashed-dotted line 
indicates ensemble mean of the historical CMIP6 models (1975–2014).
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Extended Data Fig. 5 | POP1 timeseries and regression map. Extended Data Fig. 5 Leading (most energetic) Principal Oscillation Pattern mode (POP1), 
accounting for 44.3% of the total Atlantic SST variability. a) Standardized POP coefficient time series of POP1 (PC1, blue) and the net effective radiative 
forcing (ERF; W/m2, orange) with different scenarios after 2014 (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). PC1 and ERF with SSP5-8.5 are correlated 
at 0.85, which is significant at the 95% confidence level. b) POP1 pattern shown by the local regression coefficients (°C) of the observed SSTs (ERSST_v5) 
upon PC1. The contours denote the explained variance, the contour interval is 0.2, and the dots indicate significance at the 95% level.
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Extended Data Fig. 6 | S/N maximizing eOF1 timeseries and regression map. Extended Data Fig. 6 Leading signal-to-noise ratio maximizing Empirical 
Orthogonal Function (S/N-EOF1) calculated from the historical simulations (1850 to 2014) with the CMIP6 models. a) The principal component time 
series (S/N-PC1, blue) of S/N-EOF1 and the standardized historical ERF (orange, with SSP5-8.5 pathway at the end). The correlation coefficient between 
the PC1 and ERF is 0.9, which is significant at 95% confidence level. b) Map of local regression coefficients (°C) of the observed SSTs (ERSST_v5) upon 
S/N-PC1. The contours denote the explained variance, the contour interval is 0.2, and the dots indicate significance at the 95% level.
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Extended Data Fig. 7 | eOF2 timeseries and regression map of residual SST. Extended Data Fig. 7 Second most energetic EOF mode (EOF2res) after 
removing the leading signal-to-noise ratio maximizing Empirical Orthogonal Function (S/N-EOF1, Extended Data Fig. 6) calculated from the historical 
simulations with the CMIP6 models. a) The corresponding principal component time series (PC2res). b) Map of local regression coefficients (°C) of the 
observed SSTs (ERSST_v5) upon PC2res. The contours denote the explained variance, the contour interval is 0.2, and the dots indicate significance at the 
95% level.
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Extended Data Fig. 8 | eOF1 timeseries and regression map of residual SS. Extended Data Fig. 8 Leading EOF mode (EOF1res) after removing the leading 
signal-to-noise ratio maximizing Empirical Orthogonal Function (S/N-EOF1 (Extended Data Fig. 6) calculated from the historical simulations with the 
CMIP6 models. a) The corresponding principal component time series (PC1res). b) Map of local regression coefficients (°C) of the observed SSTs (ERSST_
v5) upon PC1res. The contours denote the explained variance, the contour interval is 0.2, and the dots indicate significance at the 95% level.

NATure CLiMATe CHANge | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange

	Natural variability has dominated Atlantic Meridional Overturning Circulation since 1900
	Atlantic SST
	Spatial structure of long-term SST change
	Historical climate model simulations
	Discussion
	Online content
	Fig. 1 Time series of different SST indices.
	Fig. 2 EOF1 time series and regression map.
	Fig. 3 EOF2 time series and regression map.
	Fig. 4 Joint EOF of SST and MOC of CMIP6 model ensemble mean.
	Extended Data Fig. 1 Climatology and SL EOF.
	Extended Data Fig. 2 PC2 and NAO index.
	Extended Data Fig. 3 Cross correlation between PC2 and NAO index.
	Extended Data Fig. 4 Distribution of 40-year SST trend.
	Extended Data Fig. 5 POP1 timeseries and regression map.
	Extended Data Fig. 6 S/N maximizing EOF1 timeseries and regression map.
	Extended Data Fig. 7 EOF2 timeseries and regression map of residual SST.
	Extended Data Fig. 8 EOF1 timeseries and regression map of residual SS.




